
Introduction to the
Swiz Framework

Brian Kotek
[Team Swiz]

Tuesday, April 27, 2010

What is Swiz?

2

Tuesday, April 27, 2010

What is Swiz?

3

Brutally simple micro-architecture for
Flex and ActionScript applications

Tuesday, April 27, 2010

• Simple IoC for Flex

• Facilitates MVC Architecture

• Simple tools for common tasks
• Remote method invocation

• Event handling

• Utilities for advanced
development

Swiz in a nutshell

4

Tuesday, April 27, 2010

What Swiz is not

5

• Excessive JEE
patterns

• Boilerplate code

• Verbose XML
configuration

• Overly prescriptive

Tuesday, April 27, 2010

Inversion of Control

6

Tuesday, April 27, 2010

Swiz 101
• Flex Applications require:

• Remote Services

• Data

• Logic

• Views

7

Tuesday, April 27, 2010

Swiz 101
• Application Components

need each other
• Wire ourselves

• Use ‘Service Locators’

• Use verbose XML

8

Tuesday, April 27, 2010

Swiz 101
• Application Components

need each other
• Inversion of Control

• Annotations

9

Tuesday, April 27, 2010

Swiz 101
• Views communicate with components

• Standard Flex Events

• Facilitates MVC Paradigm

• Uses Swiz’s
Dynamic Mediators

10

Tuesday, April 27, 2010

Swiz 101
• Applications need Data

• Async Tokens

• Responders

• State

• Uses Swiz’s
Dynamic Responder

11

Tuesday, April 27, 2010

Swiz 101
• Swiz Features

at a glance
• IoC

• for Dependency Injection

• DynamicResponder
• for remote data

• DynamicMediator
• for event handling

• And so much more...

12

Tuesday, April 27, 2010

Defining Beans
• Define Beans in “BeanProviders”

• Beans are defined in plain old MXML

• Swiz calls objects “Beans” because it only
cares about their properties.

13

Tuesday, April 27, 2010

Swiz’s IoC Factory
• When Swiz loads beans, it searches for

[Inject] metadata

• When objects are created, Swiz does its
dependency injection magic

• Swiz adds event listeners to listen for
views being added to the application

• Cleans up when views are removed

14

Tuesday, April 27, 2010

Expressing Dependencies
• Dependencies are not defined in MXML

• Use [Inject] in AS blocks / objects

• Similar to Spring configuration

[Inject]

public var userController:UserController

15

Tuesday, April 27, 2010

Expressing Dependencies
• Typically you can simply inject by type

• Can specify bean ID if necessary

• Works with interfaces

• Works with inheritance

16

Tuesday, April 27, 2010

Remote Services
• Swiz provides help for working with

Remote Services

• Dynamic Responders

• Dynamic Commands

17

Tuesday, April 27, 2010

Dynamic Responders
• Bind result and fault handlers transparently

• Done using executeServiceCall()

• Can pass through additional data to
maintain state over asynchronous calls

18

Tuesday, April 27, 2010

Dynamic Commands
• Created using createCommand()

• Typically used with CommandChain

• Handles multiple events as a single unit

• Can abort or proceed if a command fails

• Can run in series or in parallel

• Works with asynchronous server calls, or
internal Flex event chains

19

Tuesday, April 27, 2010

Event Handling
• Swiz provides easy access to an event

dispatcher in beans:

[Dispatcher]

public var dispatcher:IEventDispatcher

• Allows different parts of an application to
work together, whether they are
DisplayObjects or not!

20

Tuesday, April 27, 2010

Event Mediation
• Helps greatly to decouple views and

controllers

• Enables very simple event handling

• Done using [Mediate] annotation

[Mediate(event=”type”)]

public function doSomething()

21

Tuesday, April 27, 2010

Event Mediation
• Mediates standard Flex events

• No special Event classes or Swiz-specific
Events are needed

• Handles events dispatched from display
list too

22

Tuesday, April 27, 2010

Changes in Swiz 1.0
• Moved to GitHub

• No static methods any more

• No central dispatcher (use [Dispatcher])

• [Autowire] deprecated (use [Inject])

• Small changes to configuration/setup

23

Tuesday, April 27, 2010

Changes in Swiz 1.0
• Module support

• AIR windows support

• Additional metadata:
[PostConstruct], [PreDestroy]

• Custom metadata processors (might just
be THE killer feature of Swiz)

24

Tuesday, April 27, 2010

Swiz is Almost Invisible
• Extremely unobtrusive

• No prescriptive code or
approaches forced on you

• Nearly everything is
done with metadata

• Virtually no explicit coupling
to the framework

25

Tuesday, April 27, 2010

A Swiz Application

26

Let’s see some code!

Tuesday, April 27, 2010

Roadmap

27

• 1.0 RC is imminent

• Documentation is a priority and is being
built up now

• Bug tracker will be made public

• Sample apps at GitHub (w/ more coming)

• Already discussing great post-1.0 stuff

Tuesday, April 27, 2010

Wrap It Up!

28

Questions? Comments?

Thanks!

www.swizframework.org
github.com/swiz/swiz-framework/

www.briankotek.com/blog

Tuesday, April 27, 2010

http://www.swizframework.org
http://www.swizframework.org

